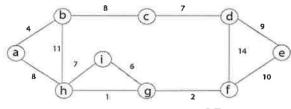
R19


H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations October/November-2025 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CSE & CSIT)

	(Common to CSE & CSII)			
Tir	ne: 3 Hours	Max.	Mark	s: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)			
	UNIT-I			
1	a What is asymptotic notation? Explain different types of notations with examples?	CO1	L2	6M
	b What do you mean by algorithm? List some of the properties of it.	CO ₁	L1	6M
	OR			
2	Demonstrate Towers of Hanoi with algorithm and example.	CO ₁	L3	12M
	UNIT-II			
3	Analyze the working strategy of merge sort and illustrate the process of	CO2	L4	12M
	merge sort algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13.			
	OR			
4	a Compare between BFS and DFS techniques.	CO ₂	L4	6M
	b Solve an algorithm for techniques of binary trees with examples.	CO ₂	L3	6M
	UNIT-III			
5	Apply the minimum spanning tree of the following graph using Kruskals	CO ₃	L3	12M
	algorithm and prims algorithm.			
	B 7 A			

OR

6	a	Explain in detail about greedy method and its applications.	CO ₃	L2	6M
	b	Simplify the algorithm for Knapsack problem and analyze time	CO ₃	L4	6M
		complexity.			
		UNIT-IV			
7	D	Distinguish in detail 8-queens problem using back tracking with state space	CO4	L4	12M

tree.

OR
8 Discuss the Hamiltonian cycle algorithm with step by step operation with CO4 L6 12M example.

UNIT-V

9 Explain the class of P and NP with example. CO5 L2 12M

10 Differentiate between NP- complete and NP-hard problems. CO5 L4 12M

*** END ***

R19

H.T.No.

🖟 SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR 🕍 (AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations October/November-2025 DATA WAREHOUSING AND DATA MINING

(Common to CSE & CSIT)		Mar. Mar. L			
711	Time: 3 Hours (Answer all Five Units $5 \times 12 = 60 \text{ Marks}$)		Max. Marks: 60		
		UNIT-I			
1	a	Define Data mining? Explain about data mining on what kind of data.	CO1	L1	6M
	b	Compare Data Warehousing and Data Mining.	CO1	L5	6M
		OR			
2	a	What is Data Reduction? Discuss in brief.	CO1	L1	6M
	b	Determine the concept hierarchy generation for categorical data.	CO1	L4	6M
		UNIT-II			
3		Discuss in brief about schemas in multidimensional data model.	CO2	L6	12M
		OR			
4	a	Explain in detail about Fact constellation schema with an example.	CO ₂	L5	6M
	b	Distinguish between OLTP and OLAP.	CO ₂	L5	6M
		UNIT-III			
5	a	Discuss about Basic Concepts of Frequent Itemset mining.	CO3	L6	6M
	b	What are the advantages of FP-Growth algorithm?	CO3	L1	6M
		OR			
6		Describe the steps involved in improving the efficiency of the Apriori	CO3	L2	12M
		algorithm.			
		UNIT-IV			
7		Outline the concept of Classification by Decision Tree Induction.	CO4	L2	12M
		OR			
8	a	Explain about Bayesian belief networks with an example.	CO4	L5	6M
	b	Summarize about attribute selection measures.	CO4	L2	6M
		UNIT-V			
9	a	Inference the working of k-means clustering.	CO5	L4	6 M
	b	Compare Agglomerative and Divisive hierarchical clustering.	CO5	L5	6 M
		OR			
10	a	Discuss in detail about the Applications and trends in Data Mining.	CO5	L6	6M
	b	Describe the working of PAM algorithm.	CO5	L2	6M
		*** END ***			

Q.P.Code: 19CI0603

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Regular & Supplementary Examinations October/November-2025 SOFTWARE ENGINEERING & TESTING

11		(Computer Science & Information Technology)	- 3		
Tin	1e:	3 Hours	Iax. M	arks:	60
		(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-1			9 7
_ 1	l a	What do you mean by software crisis? Identify the reasons for software crisis.	CO1	L2	6M
	b	Compare iterative enhancement model and evolutionary process model. OR	CO1	L4	6M
2	2 a	Define data structure metrics. How can we calculate amount of data in a program?	CO1	L3	6M
4	b	Explain the spiral model of software development. What are the limitations of such model.	CO1	L4	6M
		UNIT-II	72.		
3	}	Discuss various types of COCOMO modes. OR	CO2	L2	12M
4	a	A project size of 300 KLOC is to be developed. Software development team has average experience on similar type of projects. The project schedule is not very tight. Calculate the effort, development time, average staff size and productivity of the project.	CO2	L4	6M
	b	Explain the Putnam resource allocation model. What are the limitations of this model?	CO2	L3	6M
_		UNIT-III			
5	a	Illustrate software design framework.	CO ₃	L4	6M
	b	Define cohesion and coupling. Explain relationship between cohesion and coupling.	CO3	L2	6M
er .		OR	2		
6		What is design? Describe the difference between conceptual design and technical design.	CO3	L3	6M
	b	What is modularity? List the important properties of a modular system. UNIT-IV	CO3	L4	6M
7		What is software testing? What is the deference between verification and validation.	CO4	L3	12M
		OR		15	
8		Explain decision table based testing technique.	CO4	L4	6M
	b	Differentiate between integration testing and system testing. UNIT-V	CO4	L3	6 M
9	a	Explain the phases of software maintenance with help of a diagram.	CO5	L2	6M
	b	What is software maintenance? Describe various categories of		L3	6M
×		maintenance. Which category consumes maximum effort and why. OR	, ,		JAM
10	a	Discuss Reverse engineering and Re-engineering.	CO5	L2	6M
57	b	What is regression testing? Differentiate between regression and development testing.	CO5	L3	6M
		*** END ***			
				14	

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations October/November-2025 SOFTWARE ENGINEERING

	(Computer Science and Engineering)	20	Sair	
Time	: 3 Hours (Answer all Five Units 5 x 12 = 60 Marks)	Max.	Mar	ks: 60
	UNIT-I			
e 1	Define software and Describe the characteristics of software.	CO1	1.2	12M
	OR			12111
2	What is Agile Process? Write a note on Extreme Programming(XP).	CO1	1.3	12M
	UNIT-II	1/2		o 8 7 7 7 7
3	Illustrate Eliciting Requirements in software requirements gathering.	CO2	1.2	12M
	OR	- 002	LL	12111
4	Examine Scenario-Based Modeling with suitable examples.	CO2	L4	12M
	UNIT-III			
5	Describe architectural genres for software-based systems.	CO3	L2	12M
	OR		, i	
6	What is software architecture? Describe in detail different types of	CO3	L2	12M
	software architectural styles with illustrations.			
	UNIT-IV			ş .
7	Elaborate golden rules to form the basis for a set of user interface design	CO4	L6	12M
	principles.		· *	9
	OR			
8	Describe Architecture Design in detail.	CO ₄	L2	12M
	UNIT-V			5 50
9	What is Testing? Explain a number of software testing strategies with	CO5	L2	12M
	neat sketch.		7.3	***
- 2	OR	91 E		Čŧ.
10 a	Explain in detail about Black box testing.	CO5	L5	6M
b	Illustrate Testing Strategies for Object Oriented software.	CO5	L2	6M
	*** END ***			12 6
			61	

O.P.Code:19ME0314

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations October/November-2025 THERMAL ENGINEERING

(Mechanical Engineering)

		(Mechanical Engineering)		24,	
T	im	e: 3 Hours	May	Ma:	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)	Wiccie.	Mai	AS. OU
1	8	Explain the working principle of single stage single acting reciprocating air compressor.	CO1	L2	6M
	ŀ	Mention single stage compressor equation for work, if neglecting clearance volume.	CO1	L2	6M
		OR	18		
2	a				
-		Explain the working of Centrifugal compressors with neat sketch. State how the air compressors are classified.	CO1	L2	6M
		UNIT-II	CO1	L1	6M
3	a	reality of a simple open cycle gas turbine Figure.	CO ₂	L1	6M
	b	Write short note on fuels used for gas turbine.	CO ₂	L2	6M
		OR			i GIVI
4		The air enters the compressor of an open cycle constant pressure gas turbine at a pressure of 1 bar and temperature of 20° C. The pressure of the air after	CO2	L3	12M
		compression is 4 bar. The isentropic efficiencies of compressor and turbine			
		are 80% and 85% respectively. The air-fuel ratio used is 90:1. If flow rate			- 6
		of air is 3 kg/s. find,(i) Power developed,(ii) Thermal efficiency of the			
		cycle.	60		
		UNIT-III	F 0.1		
5	a	TOTAL 1	CO2	E 2	C) (
		to a pressure of 0.2 bar. Find the velocity of steam during the nozzle.	CO3	L3	6M
	b	Explain what is meant by critical pressure ratio of a nozzle.	CO3	L2	CM
		OR	COS	LZ	6M
6	a	What are types of condensers used in steam power plant?	CO2	T 4	- A
	b	Explain briefly mixing and non-mixing condensers.	CO3	L1	6M
	~		CO ₃	L2	6M
7	_	UNIT-IV		8	
7		Explain the working process of reaction turbine.	CO4	L2	6M
	b	Show the velocity triangle diagram of reaction turbine.	CO4	L3	6M
•		OR		5	
8		In one stage of a reaction steam turbine, both the fixed and moving blades	CO4	L3	12M
		have inlet and outlet blade tip angles of 35° and 20° respectively. The mean			
		blade speed is 80 m/s and the steam consumption is 22500 kg per hour.			
		Determine the power developed In the pair, if the isentropic heat drop for	6 5		
		the pair is 23.5 KJ per kg.	4 1 2		
		UNIT-V			. 3
9	a	What are the important basic components of an IC engines?	CO5	L1	6M
	b	With a mast sleet dear 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		L2 =	6M
		OR		8 18	OTAT D
10		A single cylinder, four stroke cycle oil engine is fitted with a rope brake.	CO5	L3	12M
		The diameter of the brake wheel is 600 mm and the rope diameter is 26	JUD .	LU	17141
		mm. The dead load on the brake is 200 N and the spring balance reads 30		, III 14	
		N. If the engine runs at 450 rpm, Discover the brake power of the engine?			
		*** END ***			
			e e		

O.P.Code: 19EE0213

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations October/November-2025
ELECTRICAL MEASUREMENTS

20		ELECTRICAL MEASUREMENTS	17		
Т	•	(Electrical & Electronics Engineering)			
1	ıme	: 3 Hours	Max.	Mar	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)		27	2
		UNIT-I			5,₩
	1 a	Explain the "Indicating instruments", "Recording instruments" and	CO1	L2	6M
		Integrating Instruments". Give examples of each case.		10	01.1
	b	List the advantages and dis advantages of PMMC type instruments.	CO1	L2	6M
		OR			OIVI
1 2	2	What are the different types of damping systems? Explain them with	CO1	1.2	12M
		neat diagram.	001		12111
		UNIT-II			9
3	3	Explain how Wien's bridge can be used for experimental determination	CO ₂	L4	12M
		of frequency. Derive the expression for frequency in terms of bridge		1 21 1	
200		parameters.	A		
		OR			
- 4	ļ	Explain how insulation resistance of a cable can be measured with a help	CO2	L2	12M
		of Loss of charge method.			
		UNIT-III	4		
5	a		CO3	L4	CM
	b	A single phase kilo watt hour meter makes 500 revolutions per kilo watt	CO3	L ₄	6M
		hour. It is found on testing as making 40 revolutions in 58.1 seconds at	COS	L3	6 M
		5KW full load. Find the percentage error.			v:
		OR			
6		Explain with a neat sketch the construction and working of a single-	CO2	T 2	108#
		phase Dynamometer type Wattmeter.	COS	LZ	12M
					W.
7		UNIT-IV		v 5	
. /		Explain the construction of (i) Current transformer (ii) Potential	CO ₄	L2	12M
		transformer.			
8	•	OR			
o		Describe the construction and working of LVDT with a neat schematic	CO4	L2	6M
	b	Describe the working principle of thermocouples.	CO4	L2	6 M
	0.0	UNIT-V		£	
9	a	Explain the construction and working principle of Flux meter with a neat diagram.	CO5	L2	6 M
	b	compare flux meter and Ballistic Galvanometer.	CO5	L2	6M
		OR	COS	1.14	6M
10		Explain the internal structure of CRT with a neat diagram.	CO5	12	121/
		*** END ***	COS	L2	12M
		ET LD			

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations October/November-2025 INTRODUCTION TO IoT

		INTRODUCTION TO IoT			
1	'in	ne: 3 Hours (Open Elective-I)	7.5		
(4)		(Answer all Five Units $5 \times 12 = 60$ Marks)	Max.	Mar	ks: 60
		UNIT-I	1.2		
-	1	a Mention the applications of IoT	CO1	T14	43.4
		b Explain various link layer protocols of IoT.	CO1	L1 L1	4M
		OR	COI	LI	8M
2	2	a Describe various functional blocks of IoT.	CO1	L2	6M
		b Write down the differences between Rest API & Web Socket API.	CO1	L2	× 6M
		UNIT-II			
3	3	Explain the implementation of IoT technology in following areas:	CO2	L5	12M
		(i) Smart Parking (ii) Smart Lightening			
		(iii) Emergency response (iv) smart roads in smart cities			.4
4		OR		23	
٦		Explain how IoT technology used to enable the agricultural industry to	CO2	L3	12M
8		increase operational efficiency, lower costs, reduce waste, and improve the quality of their yield.	್ಟ್		
5	2	Mention the communication and		3)	
	•	Mention the communication protocols used for M2M local area networks.	CO ₃	L2	6 M
	b	Explain the differences between Machines in M2M and Things in IOT.	S .		
		OR	CO ₃	L5	6 M
6	a	Mention advantages and Disadvantages of M2M communication system.	CO3	L1	(N.T.
	b	What are the characteristics of M2M network?	CO3	L1 L1	6M 6M
		UNIT-IV	CO3	LI	OIVI
7	a	Mention the flavors of Linux OS supported by Raspberry pi device	CO4	L2	6M
×	b	List the various frequently used commands during operation of Linux	CO4	L ₂	6M
		OS.	04	1 21	OIVI
		OR		. a	
8		Design an automatic refrigerator light system with LED, switch &	CO ₄	L6	12M
		raspberry pi and write a python program to support the working of that	TI.		
		design.		- 25	
•		UNIT-V	9	e d	
9	a	Explain functional and operational view specifications for Home	CO5	L5	6M
	h	Intrusion detection system?		à .	57
	D	Write a python program for room and door REST services using serializes.	CO5	L3	6M
		OR		2 5	7
10	a	Implementation of amort improvious	005	τ	
	b	Design a smart lighting gratery value I.T. 1		L6	6M
		*** END ***	CO3	L6	6M

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations October/November-2025 COMPILER DESIGN

51		COMPILER DESIGN	9 5		
<i>-</i>		(Common to CSIT & CSE)			
11	me	: 3 Hours	Max.	Marl	ks: 60
œ.		(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I			α
1	a	Write in detail about the Structure of Compiler?	CO1	L3	6M
-	b	Analyzethe need for separating lexical analysis and syntax analysis	CO1	L 4	6M
		OR	34		ğ :
2	a	Illustrate Application of compiler technology	CO1	L3	4M
		Explain LEX Tool with the structure of Lex Program?	CO1	L2	8M
3 5		UNIT-II	001		OIVI
3		Consider the grammar E□TE1	.003	т.	103.4
3		E1 \rightarrow +TE1 -TE1 ϵ	CO2	L3	12M
	57	T→FT1	2		
		$T1 \rightarrow *FT1 \mid /FT1 \mid \varepsilon$		**	
		$F \rightarrow (E)/id$		75	
		` '			100
		Calculate FIRST and FOLLOW for the above grammar			
		Construct the predictive parse table and check whether the given		14 E II	6.
Fc		grammar is LL(1) ornot.	11		
4	_	OR	COA		2.2
4	a	Illustrate the rules to be followed in the finding the FIRST and	CO ₂	L2	6M
		FOLLOW.	~~~	3.1	ر بالد
1.0	D	Calculate FIRST and FOLLOW for the following grammar? E→ E+T/T	CO ₂	L3	. 6M
		T→T*F/F			
	7.5	F→(E)/id	157	1 S	3.
2		UNIT-III			
_5	a	Explain in detail about YACC tool?	CO ₃	L2	6M
	b	Describe Synthesized and Inherited attributes with examples.	CO ₃	L2	6M
		OR			- E
6	a	Define a syntax-directed translation.	CO ₃	L1	6 M
	b	Summarise the evaluation order of SDT with an example	CO ₃	L5	6M
		UNIT-IV	*0 //		340 m
7		Summarise heap management mechanism.	CO4	L5	12M
9		OR	y 17	200	12111
8	a	Write properties of memory management	CO4	L3	4M
3	b	Discuss Storage allocation strategies with suitable examples?	CO4	L2 =	8M
101		UNIT-V	COT		OIVI
Λ	_		005	Y 4	C3.5
9	a	List and explain the Issues in the design of a code generator.	CO5	L1	6M
	D	Define and Show Dead-code elimination with example.	CO ₅	L3	6M
10	(2)	OR	~~-		- 8
10		Describe about global data flow analysis?	CO5	L2	6M
65	b	Discuss function preserving transformations?	CO5	L2	6M
		*** END ***			

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

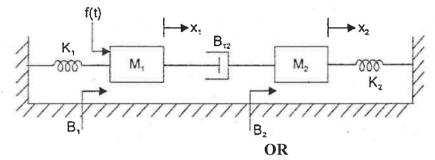
B.Tech. III Year I Semester Supplementary Examinations October/November-2025 ANTENNAS AND WAVE PROPAGATION

		(Electronics & Communications Engineering)			
Tim	ıe:	3 Hours	Max.	Mari	ks: 60
7		(Answer all Five Units $5 \times 12 = 60$ Marks)	8		7777 I
		UNIT-I			
1	0	Develop the expression for Electric and Magnetic Field radiated by Half	CO1	L3	12M
		Wave Dipole Antenna and Sketch its Field Strength pattern.	2		8 11
		OR			
2	a	Calculate radiation resistance of a dipole antenna of length $\lambda/8$ m.	CO1	L3	6M
~	b	Define Effective Aperture and give its expression.	CO1	L3	6M
		UNIT-II		13	5/
3	a	Explain about construction and operation of Yagi-Uda antenna with neat	CO4	L2	6M
		sketch.		1	
2),	b	Explain about the construction and operation of helical antenna.	CO4	L2	6M
		OR			
4	a	Calculate the directivity of 20 turn helix with $\alpha = 12^{\circ}$ and circumference	CO4	L3	6M
		equals to one wavelength.	æ		
	b	Give the applications of helical antennas	CO4	L1	6M
	€	UNIT-III		-	
5	a	Explain the effect between variation of focal length position and	CO3	L2	6M
		radiation in paraboloid.			
	b	Explain Cassegrain Feed system and give its advantages.	CO3	L2	6M
		OR			
6	a	Draw and explain the principle of parabolic reflector.	CO ₃	L2	6M
	b	A parabolic dish provides a power gain of 50 dB at 10 GHz with 70%	CO3	L2	6M
25.,		efficiency. Find out i)HPBW ii) BWFN iii) Diameter.		10	2 '
		UNIT-IV			
7		Compare the Broad side array and end fire array.	CO4	L5	12M
Э		OR			
8	a	Show that Directivity of BSA, L>>d is $D_0=2(d/\lambda)$.	CO4	L5	6M
	b	Write short notes on collinear Array	CO ₄	L5	6M
	32	UNIT-V	1 102	-152	
9	a	Explain the relation between MUF and skip distance.	CO ₆	L5	6M
	b	Explain Multi hop propagation.	CO6	L5	6M
		OR	e .	-27	- A - 1
10		Explain optimum working frequency and its significance.	CO ₅	L5	6 M
	b	Explain lowest usable high frequency (LUHF) and give its significance.	CO ₆	L5	6M
20		*** END ***			

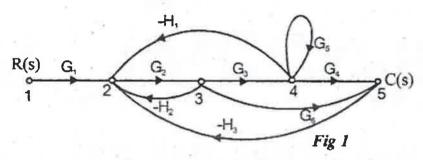
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations October/November-2025 CONTROL SYSTEMS

(Electrical & Electronics Engineering)


Time: 3 Hours

Max. Marks: 60


(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

Determine the transfer function, $\frac{X_1(s)}{F(s)}$ and $\frac{X_2(s)}{F(s)}$ for the system shown in fig

2 Obtain the overall gain C(S)/R(S) from signal flow graph shown in fig. CO1 L1 12M

UNIT-II

3 List out the time domain specifications and derive the expressions for CO2 L2 12M Rise time, Peak time and Peak overshoot.

OR

Define steady state error? Derive the static error components for Type 0, CO2 L3 12M Type 1 &Type 2 systems?

UNIT-III

With the help of Routh's stability criterion determine the stability of the CO3 L3 12M following systems represented by the characteristic equations: a) $S^5+S^4+2S^3+2S^2+3S+5=0$ b) $9S^5+20S^4+10S^3-S^2-9s-10=0$

OR

6 Develop the root locus of the system whose open loop transfer function CO3 L4 12M

 $G(S)H(S) = \frac{K}{S(S^2 + 6S + 10)}$ UNIT-IV

Sketch the polar plot for the open loop transfer function of a unity feedback system is given by $G(s) = \frac{1}{S(1+S)(1+2S)}$. Determine Gain Margin & Phase Margin.

8	Obtain the transfer function of lead compensator, draw pole-zero and write the procedure for design of leadcompensator using Bode plot. UNIT-V		L3	12M
9	Determine the Solution for Homo equations.	geneous and Non homogeneous State CO5	L3	12M
		OR		
10	a Define state, state variable, state ed	quation. CO5	L2	6M
	b Derive the expression for the trans $X = Ax + Bu$ and $y = Cx + Du$	fer function from the state model. CO5	L2	6M

*** END ***

O.P.Code: 19EE0211

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Supplementary Examinations October/November-2025

Б.	ELECTRICAL POWER GENERATION & TRANSMISSION S			-2025
Ti-	(Electrical &Electronics Engineering)	Mor	Mar	.1 CO
11111	e: 3 Hours (Answer all Five Units $5 \times 12 = 60$ Marks)	wax.	wa	ks: 60
	UNIT-I			
1	<u> </u>	CO1	L1	12M
•	of coal, steam, water, air, ash and flue gases and explain principle of	COI	131	12111
	operation briefly.			
	OR			
2	a Explain the function of chimney and precipitator.	CO1	L2	6M
	b What factors are taken into account while selecting the site of hydro	CO ₂	L1	6M
	electric power plant?			
	UNIT-II			
3	Draw the schematic diagram of a nuclear power station and discuss its	CO ₂	L1	12M
	operation.			
	OR			
4	a Explain about the fast breeder reactor.	CO ₂	L2	6M
	b What are the factors considered while selecting the site for nuclear	CO ₂	L1	6M
	power plant?			
	UNIT-III			
5	a What is Skin effect? Explain.	CO ₃	L1	6M
	b Determine the inductance/phase/km of a double circuit 3-phase line.	CO ₃	L6	6M
	The radius of each conductor is 20mm and the conductors are placed			
	on the circumference of an imaginary circle at a distance of 7m			
	forming a regular hexagonal figure.			
6	OR Write a short note on	CO3	L1	12M
O	(i) ACSR conductor (ii) Bundled conductors (iii) Standard conductors	COS	LI	12111
	UNIT-IV			
7	! 	CO4	т 2	123/
7	A 100km long, 3-phase, 50Hz transmission line has following line constants: Resistance/ph/km=0.10hm, Reactance/ph/km=0.50hm,	CO4	L3	12M
	Susceptance/ph/km=10*10 ⁻⁶ siemen. If the line supplies load of 20MW			
	at 0.9 p.f lagging at 66KV at the receiving end, calculate (i) Sending end			
	power factor (ii) % regulation (iii)Transmission efficiency. By using			
	nominal Π method.			
	OR			
R	Derive expression for voltage regulation of medium transmission lines	CO4	T.2	12M

8 Derive expression for voltage regulation of medium transmission lines CO4 12M using nominal $-\pi$ method with equivalent circuit and necessary phasor diagram.

UNIT-V

a Derive the expression for sag and tension when the supports are at **CO6** L₂ **6M** unequal heights. **b** An overhead transmission line at a river crossing is supported from L3 **6M** two towers at heights of 40m and 90 m above water level. The horizontal distance between the towers being 400m. If the allowable tension is 2000 kg, find the clearance between the conductor and water at a point mid-way between the towers. Weight of conductor is 1kg/m

OR

10 a What do you understand by grading of insulators? Explain.

CO5 L1 **6M L5**

6M

CO5

b Each line of a three phase system is suspended by a string of three identical insulators of self capacitance of C farad. The shunt capacitance of connecting metal work of each insulator is 0.2C to earth and 0.1C to line. Calculate the string efficiency of the system and also calculate string efficiency if a guard -ring increases the capacitance to the line of metal work of the lowest insulator to 0.3C

*** END ***